

Cheryl Wang, Fahim Shahriar, Seyed Alireza Azimi, Gautham Vasan, Rupam Mahmood, Colin Bellinger

Conditioned Reinforcement Learning with

Grounded Object Detection

CoRL 2024 Workshop on Mastering Robot Manipulation in a World of Abundant Data

Out-Of-Distributio

Introduction / Motivation

Goal conditioned reinforcement learning (GCRL) provides a work to learn a single policy to achieve arbitrary reaching and grasping tasks

🗟 Paper

Overview:

Videos

Agent converts text string goal to object mask goal-condition.

- Object mask improves Generalization
- Sample efficiency, and
- Performance on unseen objects.
- Objective:
- Develop robotic systems with versatile manipulation skills for dynamic environments, such as households and workplaces and human-centric labs.

Env. update a

and g

· Enable robots to handle a variety of tasks autonomously, adapting to evolving objects and goals.

GCRL Challenges:

- Object Diversity: Struggles with generalization across diverse and unfamiliar objects, requiring extensive taskspecific training
- Out-of-distribution objects requires significant additional
- Interaction Complexity: Learning efficient interaction with objects is resource-intensive and slow to converge, limiting adaptability in real-world scenarios.

Long training times and the assumption of sufficient experience on all target tasks limits the applicability of GCRL on robotics tasks

Solution:

- · Leverage language and perception capabilities of grounded object detectors to automatically produce a target object mask.
- · Goal-conditioning mask simplifies GCRL agent's learning by enabling it exploit object detectors trained on large, generic
- · Mask indicates the size and location of object in a general format
- · Mask can be automatically generated for any arbitrary new object

Simulated UR10e Reach and Grasp Environment

Setup:

- · Environment randomly selects a goal from a set of in-
- distribution target objects Ends when agent grasps target object, or a max of 300
- · Object locations are randomized Observations:
- URIOe proprioception + ego centric RGB image
- Goal-condition
- Actions
- gripper
- Negative Distance to object Plus 2 for grasping

aent aenerate

e' from g

aent select a

from o and g

Proposed Method

Mask-Based GCRL Framework

Ground Truth Masking

The GT mask is calculated based on the objects size, location and distance from the gripper. This can be produced based on orior knowledge or a depth sensor

Inferred Masking with G.DINO

The inferred mask setting uses a pretrained object detector. Does not require prior knowledge nor a depth sensor

We utilize Grounded DINO. It combines an closed-set object detector with text prompts to produce open-set object detection via self-supervised training

, Xiv.: 1707.06347, 2017 Jul 20. J Liu S, Zeng Z, Ren T, Li F, Zhang H, Yang J, Li C, Yang J, Su H, Zhu J, Zhang L. Grounding dino: Marrying dino in semandred merizininar for open-set object detection. arXiv preprint arXiv:2303.05499. 2023 Mar 9.

We evaluate 3 forms of goal-Conditioning on 10 random seeds in terms of total return, episode length and in- and out-ofdistribution object grasp.

 1-Channel mask-based goal-conditioning Ground-truth mask (GT) using known object size, distance and location Inferred mask using Grounded DINO (GD) [2]

with PPO [1] on the developed simulated UR10e

Results

GT Masking: PPO reach and grasp learning curves

Grasp Success Rate:

GT Mask: Comparison of grasp success rates for in-distribution

Goal-Conditioning	Grasp Success Rate		
	In-Distribution	Out-of-Distribution	
One-Hot Encoding	0.13	0.2	
3-Channel Image	0.62	0.28	
GT Mask	0.89	0.9	

Goal-conditioning with GT mask significantly out-performs

- One-hot encoding GC fails to learn an acceptable policy Image-based GC learns a mediocre grasp policy that fails to generalize to the out-of-distribution objects
- GT Mask GC achieves excellent grasp performance that
- generalizes to the out-of-distribution objects

GD Mask: Masking with Grounded DINO (GD) compared to GT masking on grasping with 0, 1 and 2 distractor objects.

Masking	Grasp Success Rate				
	In- Distribution	Out-of-Distribution (number of distractors)			
		0	1	2	
Train with GD, evaluate with GD	0.21	0.28	0.22	0.24	
Train with GT, evaluate with GD	0.9	0.82	0.79	0.67	

Training with GD masking suffers from false positives by the object detector. However, applying GD to the policy trained with GT masking achieves good performance on out-ofdistribution objects with 0 and 1 distractors and moderate performance with 2 distractors

Policy Demonstration

Unlike the alternatives, the dynamic goal-condition in our method provides real-time information to the agent on its progress towards the target object

· This provides feedback to the agent on its progress to the goa

Conclusion Future Work

Improved mask generation

- Evaluate alternative grounded object detectors
- Reduce cycle time for real-time control
- Reduce the impact of false positives
- Extend to handle household and scientific glassware
- Deploy on UR10e and Franka Emika Panda robots.

Summarv

- · Propose object masking as a general and versatile goalcondition for object manipulation tasks
- · Mask can be generated from: Ground truth object location, distance and size, or
- Automatically via pre-trained object detectors Mask-based goal conditioning out-performs the standard
- Converge faster and to a higher return
- Grasp generalizes to out-of-distribution objects

Acknowledgements

This research is funded through the National Research Councils of Canada's Artificial Intelligence for Design Challenge program

